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I n  this paper we investigate the manner in which finite-amplitude disturbances are 
set up in viscous fluid flows that are changing slowly in time. It is shown that, when 
the appropriate Reynolds or Rayleigh number is slowly increased, then, no matter 
how slowly this change takes place, there is always a short time interval where a 
quasi-steady approach breaks down. In  this time interval a finite-amplitude solution 
is set up which ultimately approaches that predicted by a quasi-steady theory. In  
order to demonstrate our ideas we discuss the Taylor-vortex problem in a situation 
in which the speed of the inner cylinder changes slowly in time. I n  particular we 
discuss the case when the speed of the inner cylinder is modulated slowly in time and 
it is found that a t  low frequencies the disturbances of most physical relevance are 
not periodic solutions of the equations of motion. 

1. Introduction 
Our concern is with the stability of viscous fluid flows that change slowly in time. 

I n  order to obtain precise results for a particular problem we concentrate on the 
Taylor-vortex problem with a time-dependent basic flow, but the method we use 
applies to convective- and parallel-flow instabilities. In  particular we focus our 
attention on the problem investigated experimentally by Donnelly (1964) and 
theoretically by Hall (1975) and Riley & Lawrence (1976). Donnelly performed 
experiments in which the inner cylinder of the Taylor-vortex apparatus rotates with 
angular velocity a{ 1 + 6 cos wt},  where t denotes time. The enhancement of stability 
by modulation found by Donnelly was not predicted by the subsequent theoretical 
investigations of Hall (1975) and Riley & Lawrence (1976). In  this paper we shall 
show that a t  low frequencies some qualitative agreement between theory and 
experiment can be obtained by seeking finite-amplitude disturbances that are not 
periodic in time. We shall argue that for a basic time-periodic flow the disturbances 
of most physical relevance when the flow changes slowly in time are not periodic 
solutions of the equations of motion. 

The latter assertion was also discussed by Rosenblat & Herbert (1970), who studied 
the linear stability of a fluid layer confined between boundaries having time-dependent 
temperatures. However, in the absence of nonlinear effects the role of the non-periodic 
disturbances could not be ascertained. The possible role of nonlinear effects in such 
problems was discussed by Davis & Rosenblat (1977) in the context of a model 
problem. Some of the ideas used in the present work are similar to those to be found 
in the latter paper. 

The application of weakly nonlinear stability theory to viscous fluid flows is now 
a routine procedure (see e.g. Stuart 1971). This perturbation type of approach is 
necessarily valid only a small values of the disturbance amplitude close to the critical 
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value A, of the appropriate stability parameter A of the flow. Typically i t  is found 
that in an s-neighbourhood of A, the time-dependent amplitude of a disturbance of 
magnitude O ( d )  satisfies an amplitude equation of the form 

where 7 is a slow time variable scaled on E whilst A, = (A-ntc) /e  and p, y are constant. 
The presence of imperfections and/or end effects introduces quadratic or constant 
terms on the right-hand side of the amplitude equation (see e.g. Hall & Walton 1979). 
It is easy to show that equilibrium solutions of the above amplitude equation 
bifurcate from A, = 0. These solutions of course depend on A,,y, and by studying 
their stability properties i t  can be inferred how the flow adjusts when A, is varied. 
The implicit assumption made is that  if A, is varied slowly enough then it can be 
treated as a constant in the appropriate amplitude equation. We shall show that this 
is not the case and that, however slowly A, varies, there is always a time interval 
near A, = 0 where the appropriate amplitude equation is non-autonomous. If, as is 
invariably the case in centrifugal or convective instability problems, the real part 
of y is negative, then in this time interval non-zero perturbations to the basic state 
ultimately approach the equilibrium state predicted by the quasi-steady thcory. The 
quasi-steady approach therefore fails a t  the bifurcation point A, = 0 so that i t  does 
not describe correctly the manner in which finite-amplitude motions develop when 
the flow becomes supercritical. A detailed investigation of the neighbourhood of 
A, = 0 gives a long time structure consistent with the quasi-steady thcory in the 
present problem. In more complicated problems where, two or more modes are 
possible near A1 = 0 the latter result is not to be expected since there will in general 
be several possible states available. The particular state set up when the flow becomes 
supercritical will depend crucially on both how the flow is changing and the 
disturbance which triggers the instability. Some experimental results consistent with 
this prediction have recently been given by Donnelly & Park (1982). 

In  the present paper we consider in detail the nonlinear stability of low-frequcncy 
modulated circular Couette flow. We restrict our attention to the case when c, the 
non-dimensional frequency of the modulation, is smadl compared with s ,  the 
amplitude of the modulation. In  a previous paper, using the method devised by 
DiPrima & Stuart (1973, 1975), Hall (1975) calculated finite-amplitude periodic 
Taylor vortices appropriate to the limit s + 0 with c / e  held fixed. In  this paper we 
argue that if s + 0 with c / s  < 1 then the disturbances of most physical relevance 
are not periodic solutions of the equations of motion. However, periodic disturbances 
still exist in this limit, but they lead to vortices that are exponentially small for a 
finite time interval during which the flow is locally supercritical. We believe that a t  
sufficiently small values of c such a result is not physically acceptable because random 
disturbances always present in any experiment will trigger the instability whenever 
the flow is locally supercritical. 

We shall use our non-periodic solutions of the equations of motion to show how 
the amplitude of the Taylor vortex varies with R. Our results show that initially the 
amplitude grows linearly with R, but ultimately adjusts to, grow like (R -R,)a, where 
R, is the unmodulated critical angular velocity of the inner cylinder. This change in 
the manner in which the amplitude develops with inmealsing R is evident in some 
of Donnelly’s experimental results. 

The procedure adopted in this paper is as follows. I n  8 2 we show how finite-amplitude 
perturbations to slowly varying circumferential flows can be calculated. In $ 3  we 



Nonlinear stability of slo?uly varying viscous JEows 359 

apply the results of $2 to modulated circular Couette flow. I n  $4 we show how our 
results are related to those previously obtained by using the approach of DiPrima 
& Stuart (1973, 1975). 

2. The slowly varying Taylor-vortex problem 
Consider the viscous flow between two concentric cylinders of radii R, and -Izl + d 

driven by the motion of the inner cylinder, which has angular velocity Q{1 +&wt ) } .  
Here t denotes time, and E and cr = wd2/v are taken to be small. The parameter rr 
represents the square of the ratio of d to the Stokes-layer thickness associated with 
an oscillatory viscous flow of frequency w ,  so that if cr $ 1 the flow responds in a 
quasi-steady manner. More precisely we assume that 

l % € % C T ,  

in contrast with the situation discussed by Hall (1975), where, amongst other limits, 
the case E - cr was examined using the method of DiPrima & Stuart (1975). 

Suppose next that, using d as a typical lengthscale, we introduce dimensionless 
radial and axial variables [and 4 and then define 7 = wt.  If u and v are suitable scaled 
radial and azimuthal disturbance-velocity components, then, using the notation of 
Hall (1974, the nonlinear partial differential equations to determine u and v in the 
small-gap limit are 

au aw -+- = 0, ac a$ 
where T = 2R2R, d3v-' (2) 

is the Taylor number and a 2  a 2  

agz a p  2 e -+-. 

The nonlinear functions Q1, Q2, Q, are as defined by (2.5) of Hall (1975) and we note 
that for small cr the basic velocity field v can be expanded in the form 

(3) v = 1 - [+ E (  1 - 5) f(7) + O(Ev) .  

We now write T in the form T = % + S T , ,  

where To is the critical Taylor number of linear stability theory whilst Tl determines 
the elevation of T above T,. In  such a configuration linear theory would predict 
growth (or damping) rates of order e/cr, so it is necessary to define the time variable 

7 = - 7 ,  

and then cr 8/37 in ( 1 )  must be replaced by cr 8/87 + E a/d'i. Since we have taken cr $ E 

the latter expression is dominated by the 'fast ' derivative E a/&. This means that 
the disturbance is changing rapidly on the 'i timescale compared to the basic flow. 
We then expand u, v in the form 

'i by E 

cr 

u = du*(7, 7 , C )  cos a 4  + eu1(7, 7, [) cos 2/24 + e%u2(7, 7 , C )  cos u4 + . . . , 
v = E & J ~ ( T ,  7,c) cos + E O ~ ( ? ,  7, c) cos 2U$ evM(7, 7,[) + $w,('i, 7 , C )  + . . .. (4) 
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Here a is the critical wavelength of linear theory, and the higher-order terms not 
shown explicitly will depend on IT. The determination of uo etc. is a routine 
calculation, and a t  first order we find that (uo, vo) can be written in the form 

(5) 
where A is an amplitude function to be determined a t  higher order whilst ( f o ,  9,) is 
the eigenfunction of linear stability theory. I n  fact a t  order €8 we find that A satisfies 
the eauation 

( ~ o ,  110) = A(?, 7 )  (fn(C), go(Y)), 

where the constants r and a, have the numerical values + 26 and - 10. Iff(7) + T1/2T0 
is positive then (6) has the 'locally equilibrated ' solution 

whilst if f ( 7 )  + T1/2T, is negative the corresponding solution is 

A = 0. (8 )  
Moreover any small disturbance to the equilibrium states (7 )  or (8) decays to zero 
on the ?-scale. Thus, to the order to which we have proceeded, the 7-dependence of 
the disturbance is passive. Thus (7)  confirms the usual implicit assumption that a 
weakly nonlinear theory ignoring the slow time dependence of the basic flow will give 
an accurate prediction of the instantaneous (on the 7-scale) equilibrium configuration. 
Clearly a t  higher order this will not be the case, but we do not address that problem. 
Instead we investigate the relationship between the solutions (7 )  and (8) when the 
flow is locally neutral so that f ( 7 )  + 57/257, = 0. We shall see that the switch between 
these solutions does not take place in a quasi-steady manner. 

Suppose then that f ( 7 )  + T,/257, vanishes a t  7 = 7 * ,  so that near 7 = 7* 

u - $(7-7*)9 [f(7*)]9, (9) 

and a t  this stage we assume f*(7*) =k 0. We also note that the growth rate according 
to a quasi-steady linear stability analysis is then O(6) (7---7*) .  Thus if we choose to 
work in a (IT/€)$ neighbourhood of 7 this growth rate and the rate of change of the 
basic flow are comparable. We are therefore led to define the new time variable 7" by 

7"= (.-.*)(f)l. 
and then a d l a 7  in ( 1 )  must be replaced by ( ~ c ~ ) f a / a f .  I n  view of (9), (10) we expect 
the disturbance to be O ( d d )  in this regime. We therefore expand u in the form 

u = (€IT)hio(7", 5) cos a$ + (€cr)9Gl(f, 5) cos 2a$+ ( € c 7 ) k : l ( f ,  5) cos a$+O(eIT)f, 

together with a similar expansion for v. The determination of Go etc. follows the usual 
procedure, and at  O(sa)i  we find 

where (fo, go) is as defined earlier and B(+7 is an amplitude function, which a t  O(ea)f 
is found to satisfy 

- = rf(7*) f B  + a1 B3, ( 1 1 )  
dB 
d7" 
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FIGURE 1. Some solutions of (11) for different values of B+. 

and depending on whether the flow becomes unstable or stable with 7 increasing 
through 7 = T* the constant part of the coefficient of the linear term in (1 1) is positive 
or negative. 

The equation (11) is easily integrated to give 

where B+ = B(7" = T + )  for some T + .  Iff(T*) > 0 we are interested in the solution of 
(12) for 7" > 7 + ,  and (12) determines the development of an initial disturbance B+ 
imposed a t  7 = T + .  It follows directly from (12) that for any such disturbance with 
B+ =k 0 

Some typical solutions having this property are illustrated in figure 1. The asymptotic 
form (13) is recognized to be the limit as 7 -+ 7: of the quasi-steady solution (7) .  Thus 
any small disturbance in a { r ~ / c } i  neighbourhood of 7 = T* develops smoothly into 
the quasi-steady solution (7). These disturbances cannot be related to infinitesimal 
disturbances appropriate to linear theory because, for any B+, T +  , B will always 
develop a square root singularity when the denominator in (12) vanishes. Thus the 
disturbances which we discuss here are not connected to infinitesimal disturbances 
appropriate to the limit 7" + - cr;, . 

Now let us consider the case w h e n f ( ~ * )  < 0, so that the flow is unstable before 
7 = T*. I n  this case we are interested in a solution of ( 1 1 )  that matches with the 
quasi-steady solution (7) when 7"-+ - cc. The appropriate form of (12) is 

2a, J exp [rf(7*) 021 de 
T 

and for 7"+ cc the amplitude B tends to zero like exp [&f(7*)'i2]. Thus (14) describes 
how the quasi-steady solution (7)  decays exponentially to zero in a {cT/E):  neigh- 
bourhood of T*. Our analysis fails in the case off(7*) = 0, but the situation is easily 
remedied by then considering a {(T/E}~ neighbourhood of T*. The appropriate 
amplitude equation is then similar to (1 1) with freplaced by P.  The solutions of this 
equation then enable us to match the quasi-steady solutions either side of 7 = T*. 

However, in this case the quasi-steady solution either side of 7* is either (7 )  or (S),  
and there is now no switch of solutions. 

The above discussion can clearly be adapted to any convective- or parallei-flow 
instability that bifurcates supercritically with increasing Rayleigh or Reynolds 
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number. The results of our calculation are reassuring because they show that the 
quasi-steady approach used in such problems gives the correct form of the equilibrium 
solution for most of the time. The approach fails only in a {rr/e}a neighbourhood of 
any instant where the flow is locally neutrally stable. However there are cases when 
the quasi-steady approach will be much less successful. We refer to situations where 
multiple solutions associated with nearly coincident eigenvalues can occur (see e.g. 
Davey, DiPrima & Stuart 1968; Hall & Walton 1979). In  such situations the 
equilibrium amplitude solutions predicted by quasi -steady theories are usually 
determined by solving pairs of coupled cubic amplitude equations. At some values 
of the appropriate stability parameter more than one stable configuration is possible. 
In  such problems the time interval over which the basic flow variation is important 
can be comparable to the separation of the eigenvalues, and coupled non-autonomous 
differential equations with cubic nonlinearities must be solved. The ultimate (if any) 
stable state set up then depends on the form of the initial perturbation, and can be 
different from that predicted using a quasi-steady approach. 

3. Modulated Couette flow 
Suppose that as a particular case we now take f ( r )  == cos r so that we are in a 

position to discuss the stability of Couette flow modulated a t  low frequencies. 
Previous theoretical investigations of this problem have found that modulation has 
a destabilizing effect on circular Couette flow, whereas experimentally the opposite 
result has been found. 

As a first step towards a reconciliation between theory and experiment it is 
necessary to describe how Donnelly defined the critical Taylor number for such a flow. 
Using the ion technique pioneered by himself, Donnelly was able to measure the mean 
amplitude of any vortex flow superimposed on the basic circumferential flow. The 
results given by Donnelly typically show an initial linear growth of the amplitude 
followed by a more rapid growth at higher Taylor numbers. The Taylor number a t  
which this change in the rate of growth of the amplitude took place was defined to 
be t,he critical Taylor number. Such a definition is of course suggested by the 
corresponding steady problem where such a result is now well known. The vortices 
present when the amplitude grew linearly with increasing Taylor number were 
described as 'transient vortices' by Donnelly, but we shall see that the low-frequency 
approach of $2 predicts such vortices. 

We return now to the amplitude equation (6) and its equilibrium solution (7) which 
exists for the part of the period when 

TI 
2% 

cos 7+- > 0. 

This condition simply means that the instantaneous Taylor number of the flow is 
greater than its steady critical value. It follows that there are three regimes to discuss 
depending on whether the flow is supercritical for none, part, or all of a period of 
oscillation of the inner cylinder. The quasi-steady solutions in each of these regimes 
are as listed below : 

TI ( a )  - < - 1 ,  A2=0.  
2% 
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where n is an integer and cos r1 = - T,/2T0; 

A2 = 0, 2nn+r1 < T < (2n+ l )n-r1.  

r 
2 3  

'r, ( c )  2T,> 1, A2 =-- COST+-  for all 7 
"1 

In  ( b )  above the transition between a finite-amplitude equilibrium state and the zero 
state takes place in short time intervals of order {u /c } i  in the manner described in 
92. For this reason the solution ( b )  above does not correspond to a periodic solution 
of thc full equations since in an interval where the flow is becoming supercritical the 
amplitude has a square root singularity a t  some time. Some further discussion of this 
point will be given in $4. We further notc that the eases q / 2 T ,  - k 1 must be treated 
as special cases in the manner outlined in 92. 

In  order to compare our results with those of Donnelly we note that the latter 
author rescaled the amplitudes that he measured on the amplitude for the unmod- 
ulated problem a t  R = 58. The critical value of R for the unmodulated case was found 
by Donnelly to be R, = 5.64, so that in order to determine the implications of (a)-(c) 
we redefine these solutions in terms of the amplitude AD used by Donnelly. We recall 
that the speed of the inner cylinder is R( 1 + E cos r ) ,  so that the quasi-steady solutions 
in the three regimes of interest are as follows. 

(I) R(1 + t . )  < R,, A D  = 0. 

(11) R(l -c )  < R, < R(l+E),  

A D  = 0.74{R2( I + 6 cos T ) ~  - RE}b for 2nn - T~ < 7 < 2nn + rl, 

where cos 71 = c-'(R,/R- 1). 

A D  = 0, for 2nn+r1 < 7 < 2(n+ I)n-7, .  

(111) A,  = 0.74{R2( 1 + c cos 7)2 - RE}$ 
We note that the above expressions are correct only to order E with R-0, - O ( E ) .  
The above solutions can be used to compute the mean value of A ,  defined by 

R( 1 - E )  > R,, for all 7. 

and this is the quantity given in figure 5 of Donnelly (1964). Equation (15) together 
with (I), (11) and (111) can be used to compute AD for R-a, - O(e),  although the 
cases R, - R( 1 & E )  should be considered separately. The correction to AD introduced 
by doing so is negligible, but later we shall a t  least indicate the result of considering 
these special cases. 

It follows from (15) and (I)  that AD is zero unless the maximum instantaneous 
Taylor number is ever supercritical. When this maximum Taylor number is slightly 
supercritical in the sense that Q(l +€)-a, < E. we can show that 

- R-0, 
I + €  ' 

L4D - ~ 

so that initially AD increases linearly with R. In  contrast with this result we can show 
that for R(l  +e)-R, % 5 AD - (R-R,)', 
so that the initial linear growth of AD is ultimately replaced by a square-root growth. 
We believe that it is this change in the nature of the growth of that  is so apparent 
in the low-frequency results of figure 5 of Donnclly (1964). A direct comparison with 
Donnelly's results is not feasible because of the reasons described below. 
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FIGURE 2 .  The mean amplitude x,, for modulated Couette flow with c: = 0.08 

We refer to the fact that  it is well known that in tho unmodulated problem the 
Taylor-vortex flow becomes unstable to wavy vortices a t  higher Taylor numbers. I n  
the apparatus used by Donnelly the wavy-vortex critical angular velocity is only 
about 5% greater than the Taylor-vortex critical angular velocity R,. Since the 
minimum value of e used by Donnelly was c = 0.08 i t  is clear that  if a t  low frequencies 
the measurements reported by Donnelly correspond to a quasi-steady responsc: of t.hc 
fluid then wavy vortices cannot be ignored. We do not modify our theory to take 
this into account but recognize the fact that  for such high values of‘ e our results 
probably only apply to the initial linear growth stage of the vortices. Clearly our 
results are applicable to the case when wavy vortices never appear during a period 
of oscillation of the inner cylinder. Such a situation could be realized experimentally 
by using an apparatus with a wider gap or using a small-gap apparatus a t  smaller 
values of E .  It should also be pointed out that  thc characteristic change in the rate 
of growth of the vortex amplitude with increasing R would also be found even in the 
presence of wavy vortices. Thus, even though our neglect of wavy vortices prevents 
us reproducing accurately Donnelly’s results a t  low frequencies, we feel that our 
results and Donnelly’s are a t  least in qualitative agreement. In  figure 2 we have used 
our results to compare AD for different values of R with c = 0.08. This figure should 
be compared with the case P = 46.1 and e = 0.08 of Donnelly’s figure 5. We note that 
both figures indicate an initial linear growth in amplitude of the vortex followed by 
the more usual square-root growth. We feel that  such a qua)litative agreement is about 
the most that can be expected in view of our neglect of .wavy vortices, which wore 
almost certainly present in Donnelly’s experiments. 

Finally we return to the special eases R, - R( 1 f e ) ,  which have so far not been 
discussed in detail. Consider firstly the case R, N R(1 + e ) ,  so that the flow just  
becomes supercritical for part of the period of oscillation of the cylinder. In  this regime 
i t  is necessary to consider a time interval of length O(cr/e)i centred on the time when 
the inner cylinder achieves its maximum velocity. The angular velocity R is then 
taken to be such that R, - R( I + e )  N O(e&d), and the outcome is that in this time 
interval the Taylor vortex has amplitude O(ds4) and satisfies an equation similar 
to (1  1) but with the coefficient of B now quadratic in 7: The solutions of this equation 
show that any disturbance imposed on the flow in this time interval can only grow 
a t  most for part of the interval and ultimately decays to zero. Thus i t  follows that 
the results shown in figure 2 are not valid for R,-R(l +E) - O ( e & d )  and the linear 
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growth of AD discussed above only applies for €5 d < a,- (1  +c)  < c. However, the 
exact manner in which the linear growth of A ,  is altered depends on the precise form 
of the imposed disturbances. A similar analysis applied to the case 
Q,-Q(l +c)  N O ( d d )  shows that the results of figure 2 are in error by O ( e b 3 )  in 
this regime. I n  view of the smallness of CT assumed in our analysis it follows that such 
errors are not significant. 

4. Comparison with the method of DiPrima & Stuart 
We have seen that the finite-amplitude solutions constructed in $52 and 3 are not 

periodic in 7 if the flow is locally supercrit,ical for only part of each cycle. Moreover 
in this case the solution in a (cr/c)$ neighbourhood of the locally neutral time develops 
a singularity if it  is extended for sufficiently large and negative values of 7: Thus any 
non-zero solution of ( 1 1 )  develops a singularity a t  some value F =  7" where 
B N (f-3-1. The physical significance of extending a solution for 7 decreasing until 
this occurs is of course not clear. We presume however that near 7"= a more 
complicated initial-value problem for bigger disturbances can be formulated which 
would have B - (f-9-6 as a long-time behaviour. A similar singularity occurs when 
the growth of Gortler vortices or Tollmien-Schlichting waves in boundary layers is 
considered (see Hall 1982a, b;  Hall & Smith 1982). 

We now turn to the question of how the present approach is related to that used 
by Hall (1975) for the case c + 1 ,  e /a  - O(1). This limit was investigated using the 
method of DiPrima & Stuart (1973,1975), who devised an expansion procedure which 
they used to investigate the stability to Taylor vortices of flows in journal bearings. 
In  that problem the polar angle q5 takes the place of the 7-dependence in our problem, 
and the problems are closely related. 

Suppose then that we follow Hall (1975) and consider the limit c + 0 with a / e  = a 
held fixed. The Taylor vortex is then of order €4 and the appropriate expansion is 
again (4) but with the ?-dependence now dropped. The solution is given in detail by 
Hall (1975) and we simply note here that the amplitude A(7)  of the Taylor vortex 
satisfies 

where r, q and a, are as in (6). It is not difficult to show that this equation has 
periodic solutions for T, > 0 which can be written in the form 

where 

We might expect that if the further limit a -+ 0 with fixed is taken then our results 
of $3  would be recovered. This is not the case, but we can recover the results of 93 
by solving (16) in the limit a + 0 and relaxing the condition that the solution be 
periodic in 7. 

These solutions can be constructed by following the expansion procedure of $ 2 .  We 
suppose that - 1 < q / 2 %  < 1 and note that the quasi-steady solution of ( I  6) can 
be written in the form 

A = { -r (cos 7+%)J:+O(a), 
a, 2% 
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which is valid in the interval ( -71, 71), where 71 = c0s-l ( -  T1/2T,). In  this time 
interval the flow is locally supercritical and we expect that  alternative asymptotic 
forms for A should be developed near +71. I n  fact near 7 = 71 the flow is changing 
from supercritical to subcritical, and, in terms of the stretched variable 7" = (7-71)/af ,  

the appropriate asymptotic solution of (16) that matches with (18) is 

+O(aB). (19) 1: - exp [ - sin 71 r?] 
2a1 I-, exp [-sin 71 ~ 6 ' 2 1  I T  A == 

A similar expansion must be set up near 7 = -71, and the appropriate variable is 
then ;= (7+71)/a4. The first term in this expansion stttisfies the same differential 
equation as does the first term in (19), but with 71 replaced by -71. The equation 
must be solved subject to an initial condition a t  some 7" == and is required to match 
with (18) when 7 -+ -71+. The required solution develops a singularity a t  some ? < * 
and so there is no periodic solution of (16) when - 1 < !FJ2T0 < 1 ; nevertheless we 
believe that in the limit a --f 0 such disturbances are the most likely to be observed 
experimentally. We can of course choose to restrict our attention to periodic solutions 
of (16), and it is interesting to see how such solutions are related to the class of 
disturbance discussed above. 

The periodic solutions of (16) were given earlier by (17) ,  and their asymptotic form 
when a -+ 0 is readily obtained by standard techniques. AJternatively the appropriate 
asymptotic forms can be found by constructing asymptotic solutions of (16) directly. 
For the sake of brevity we shall here summarize briefly the outcome of either 
calculation. 

Firstly if T, /2T ,  > 1 the quasi-steady asymptotic form (18) is valid for all 7 ,  and 
so is the required periodic solution of (16). If T1/2T, is decreased below unity we expect 
that  (18) will describe the periodic solution for only a limited range of values of 7 .  

Thus if we take - 1 < T1/2T0 < 1 the expansion (18) is found to be valid in the 
interval (72, 71), where 72 E ( -71, 71) is to be determined. 

Near 71 we retain (19), which describes the initial decay of the Taylor vortex when 
the flow becomes subcritical. If we allow 7" to tend to a) in (19) we find 

[ - sin 7;!(7 - 71)2 
A - ad exp ] ( - 2a1)-1 sin 7$, 

so that for 7 > 71 and 7 - 71 - O( 1 )  we expect A - a4 for some 6'. Thus when 
7 increases through 71 the amplitude of the vortex first falls off from O(1) to  O ( d )  
and ultimately to O(a4e-s(7)/or). Since we are interested in periodic solutions of (16) 
we follow the development of this exponentially small disturbance until it ultimately 
grows sufficiently for nonlinear effects to be important. This development must of 
course be given by solving the linearized form of (16) to give 

This solution matches with (20) when 7-+71+ and is valid in the range 
71 < 7 < 2n+7,, where 72 is still to be determined. 

The solution (21) decays until 7 = 2 n - ~ , ,  beyond which i t  will grow until 
A - O(ao), when the exponential in (24) is O(a-i). This condition determines 72 ,  which 
therefore satisfies 

T1 a 2% 2% 

E(sin72+---)---(sm q 7 2  r . T1+- = -t lna .  
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We can show from above that T~ is given by 

where rl0+ 2n ( cos 7 + $) dr = 0. 
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The latter condition determines 720 in ( - T , , T , )  only if 
solutions of (16) exist only for 

a time interval of length O(a)  near T ~ + ~ , , .  We thus write 

> 0, so that periodic 

I n  order to complete the construction of the periodic solution of (16) we consider 
> 0. 

- T-T2 t = -  
a 

and expand A in the form A = Xo(t)+O(a h a ) .  

The function Xo is then found to satisfy the equation 
- 5 = ~ ( C O S  7m+--) T l -  Ao+a,Xi ,  

at 2% 

and a solution of this equation is 

This function enables us to match (23) when t + - co with (21) when T --t r2- +2n. 
I n  addition we see that when t +a the function Xo equilibrates to the value of the 
quasi-steady solution (19) evaluated a t  rz0. Thus we have constructed a periodic 
solution of (16). We note that the two solutions coincide for only part of the time 
wheil the flow is locally supercritical. If T1/257, increases beyond unity the solutions 
coincide for all time and are given by the quasi-steady form (19). If T , / 2 T ,  is in the 
range ( - 1 , O )  then only the non-periodic solution exists. 

The above discussion shows clearly the structure of the non-periodic and periodic 
solutions of (16) in the limit a + 0. Clearly the analysis of $ 3  is easily modified to  
construct directly the periodic Taylor-vortex flows appropriate to the limit E + 0, 
cr < e .  Again it is found that the periodicity conditions applied in the regime where 
the flow is supercritical for only part of a cycle causes the amplitude of the disturbance 
to remain small when the flow becomes supercritical. I n  view of the obvious similarity 
of this case with that discussed above we do not discuss it further. We note that, even 
though this periodic solution is probably of no physical relevance in the modulated- 
Couette-flow problem, the necessity of retaining the periodicity condition in for 
example the journal-bearing problem means that such periodic solutions are impor- 
tant elsewhere. Thus the asymptotic form of the periodic solution given above is 
applicable to the journal-bearing problem and shows how the structure found by 
DiPrima & Stuart is modified in the WKB limit. 

The author acknowledges some useful discussions on this problem with Professor 
R. J. Donnelly a t  the University of Oregon. 
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